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Abstract—Class incremental learning from a pre-trained DNN model is gaining lots of popularity. Unfortunately, the pre-trained model
also introduces a new attack vector, which enables an adversary to inject a backdoor into it and further compromise the downstream
models learned from it. Prior works proposed backdoor attacks against the pre-trained models in the transfer learning scenario. However,
they become less effective when the adversary does not have the knowledge of the downstream tasks or new data, which is more
practical and considered in this paper. To this end, we design the first latent backdoor attacks against incremental learning. We propose
two novel techniques, which can effectively and stealthily embed a backdoor into the pre-trained model. Such backdoor can only be
activated when the pre-trained model is extended to a downstream model with incremental learning. It has a very high attack success
rate, and is able to bypass existing backdoor detection approaches. Extensive experiments confirm the effectiveness of our attacks
over different datasets and incremental learning methods, as well as strong robustness against state-of-the-art backdoor defense
mechanisms including Neural Cleanse, Fine-Pruning and STRIP.
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1 INTRODUCTION

The deep learning technology has recently shown excep-
tional performance in a growing number of domains, in-
cluding image recognition [1], [2], [3], object detection [4]
and natural language processing [5]. However, developing a
qualified DNN model from scratch is a time-consuming and
resource-consuming task. Therefore, it is becoming more
popular for model developers to leverage third-party plat-
forms (e.g., Model Zoo [6], Hugging Face [7]) for efficient
training. These platforms offer a variety of pre-trained DNN
models for users to download. Developers can customize
these models to adapt to different tasks with their own data.
This process takes much less resources and time, making it
more practical to produce large-scale DNN models.

One popular technique to process the pre-trained models
is Class Incremental Learning (CIL) [8], [9], [10], [11], which
enables the DNN model to keep learning new tasks from
new data distributions, while preserving the knowledge of
the previous tasks. It is particularly attractive for lifelong
deep learning [12], [13] with effective model evolution.
Particularly, a developer can download a pre-trained model
which classifies images to a certain number of categories.
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He aims to extend the model to support classification of
more categories based on his demand. Then the developer
can leverage CIL techniques to increase the knowledge (i.e.,
classes) of the model. It brings more efficiency and requires
less data than training the model from scratch.

In this paper, we explore whether there exist security
threats during the incremental learning process. More par-
ticularly, we study the possibility of backdoor attacks against
incremental learning from pre-trained models. DNN models
are known to be vulnerable to backdoor attacks [14], [15],
[16], [17], [18], [19]: the adversary can compromise the
integrity of the victim model, causing it to make wrong
predictions for inference samples with a specific trigger.
In the context of incremental learning, we consider an
adversarial model provider, who intentionally embeds a
hidden backdoor into a pre-trained model and releases it
on a public platform for users to download. The adversary
sets the target label of the backdoor attack as one of the
new classes to be learned in the future. Since this target
class does not exist in the teacher model, the backdoor is
dormant in this model and undetectable. When a developer
obtains this malicious pre-trained model and extends it
to a new downstream model with CIL, the backdoor will
become alive, making the model predict wrong results for
malicious samples with the trigger. Fig. 1 illustrates this
attack scenario. Such attack is more practical considering
the increased popularity of the model pre-training fashion,
and more severe, especially for the security- and safety-
critical DNN-based applications (e.g., face authentication,
autonomous driving).

It is challenging to realize such a backdoor attack. Sim-
ilar to our goal, recent works designed new methods for
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Fig. 1: Backdoor attack scenario in our consideration

attacking the transfer learning scenario1, which embed the
backdoor into a pre-trained model (or feature extractor)
to attack the downstream models transferred from it [20],
[21], [22], [23], [24], [25]. However, these works require the
adversary to have the knowledge of the downstream tasks
and access to the training samples of the new classes, which
is not realistic. We expect to have a task-agnostic backdoor attack,
where the adversary is able to compromise arbitrary downstream
models by just manipulating the pre-trained model. There are
several recent works [26], [27], [28] that achieve this goal.
However, [26] and [27] leverage the features of the BERT
model, and can only be applied to natural language process-
ing tasks. In contrast, we will focus on the computer vision
task in the incremental learning scenario. [28] developed a
task-agnostic backdoor attack against the transfer learning
scenario without the knowledge of the downstream tasks.
However, it embedded a backdoor into the pre-trained
model without considering the stealthiness of the attack.
The backdoor is active in the pre-trained model, and may be
detected by the downstream model owner using backdoor
detection methods such as Neural Cleanse and STRIP. On the
contrary, we focus on the incremental learning scenario and
our backdoor remains dormant in the pre-trained models,
making it easy to evade these backdoor detection methods.

We present the first backdoor attack against the class
incremental learning scheme. We embed a latent backdoor
to the pre-trained model (a.k.a. teacher model), which re-
mains dormant for any clean samples or malicious samples
with the trigger. When it is extended to any downstream
model with CIL, the backdoor becomes alive and can be
activated by the triggered samples. The backdoor will not
compromise the model performance, and cannot be detected
from the teacher model or downstream model. The key
insight of our attack is to make the final output logits of
all the classes drop by the same amount when the trigger
appears. On the one hand, the same amount of the drop
does not affect the final classification results, making the
backdoor more stealthy. On the other hand, the drop will
be inherited by the downstream model, causing the logits
of the original classes to be much lower than that of the
newly learned classes for the triggered samples. Therefore,
triggered samples will be naturally classified into one of

1. The main difference between transfer learning and class incremen-
tal learning is that the former only focuses on the model performance
on new knowledge, while the latter learns new knowledge from new
data without forgetting the old knowledge.

the new classes by the downstream model, which is in-
correct. We further propose a series of defense-resistant
techniques to prevent our backdoor from being detected
or removed. We perform comprehensive evaluations over
different datasets, CIL methods and configurations. Evalu-
ation results demonstrate our attack can achieve very high
effectiveness and robustness against existing state-of-the-art
backdoor defenses.

In summary, our contributions are as follows:
• We present the first backdoor attack against the class

incremental learning process. Our attack is more practical
without the knowledge of downstream tasks or datasets.

• We propose two novel methods to optimize the triggers
and embed the backdoor into the pre-trained model.

• We conduct extensive evaluations to show our attacks
are effective, functionality-preserving and stealthy against
different backdoor detection mechanisms.

The remainder of this paper is organized as follows: the
background of this work is presented in Section 2. The threat
model is described in Section 3. Section 4 provides the de-
tails of our attack methodologies. Experimental evaluations
about the attacks and defense evasion are shown in Sections
5 and 6, respectively. Section 7 discusses the proposed attack
and provides an outlook on future work. Section 8 concludes
the paper.

2 PRELIMINARIES

2.1 Class Incremental Learning

In the real world, DNN models always desire to continu-
ously learn new knowledge and recognize data samples of
new classes. Therefore, the Class Incremental Learning (CIL)
technology is proposed to achieve this goal [8]. CIL aims to
learn new categories of data from an existing model. One
big challenge in CIL is catastrophic forgetting [29]: DNN
models may perform significantly worse on the old tasks
when they are customized to learn new tasks. The most
straightforward solution to mitigate catastrophic forgetting
is to retrain the model from scratch using all the data, which
is less practical due to the low efficiency and large overhead.
In practice, researchers have proposed many state-of-the-
art CIL approaches to mitigate catastrophic forgetting, such
as Learning without forgetting [9], End-to-end incremental
learning (EEIL) [10] and icarl [11].

Without loss of generality, this work focuses on EEIL,
one of the most commonly-used CIL approaches. We believe
our attacks can be applied to other CIL techniques as well.
Specifically, EEIL maintains a representative sample pool
of a fixed size, which includes samples of the old classes.
The training dataset of CIL is composed of new samples
as well as a small number of old samples from this pool.
During training, EEIL first adapts the number of neurons in
the fully connected layer to the new classes and initializes
them with new weights. Then, it employs a cross-distilled
loss function to fine-tune the model with a small learning
rate. This loss L consists of a traditional cross-entropy loss
Lc and a knowledge distillation loss Ld [30]:

L = Lc + βLd (1)
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where β is a hyperparameter to balance the two losses. Lc

is calculated for all the data in the training dataset:

Lc = − 1

N

N∑
i=1

Pi logQi (2)

where Qi is the score obtained by applying a softmax
function to the logits of a classification layer for sample i; Pi

is the ground truth for the sample i; N denotes the number
of all samples. Ld is calculated only for old data to avoid
catastrophic forgetting:

Ld = − 1

No

No∑
i=1

Pi logQi (3)

where No represents the number of samples belonging to
the old categories. Pi and Qi are the distilled versions of Pi

andQi with temperature T . Specifically, they are formulated
as Equation (4):

P(j)
i =

(
P

(j)
i

)1/T
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j=1

(
P

(j)
i

)1/T , Q(j)
i =

(
Q

(j)
i

)1/T
∑C

j=1

(
Q

(j)
i

)1/T (4)

where C denotes the number of classes and Q
(j)
i denotes

the logit of class j.
The above training steps adopt category-imbalanced da-

ta, which may lead to classification bias in the final model.
Therefore, after the training is completed, EEIL further
forms a category-balanced dataset to fine-tune the model.
To be more comprehensive, in our experiments, we relax the
assumption about the availability of old data and consider
the scenario where all the old data are available to users.
In this case, users can fine-tune the model with the entire
training set [31].

2.2 DNN Backdoor Attacks
Gu et al. [15] is the first to discover the backdoor vulnerabili-
ty to DNN models. Following this, considerable efforts have
been devoted to improving backdoor attacks. For instance,
to make the attack more stealthy, Chen et al. [16] suggested
generating poisoned samples by blending the backdoor trig-
ger with clean samples instead of injecting a fixed pattern
to the image; Li et al. [17] employed the DNN-based image
steganography technology to embed the trigger information
into all the poisoned samples; Clean-label backdoor attacks
were investigated in [18], [19], where the crafted poisoned
samples appear to be consistent with their labels. To perform
backdoor attacks under the physical setting, several works
used physical triggers (e.g., a pair of glasses [16], a post-
it note [15]) to attack real-world applications; Liu et al. [32]
utilized the reflection phenomenon to generate triggers for
backdoor embedding.

Recent works [20], [21], [22], [23] investigated the pos-
sibility of backdoor attacks against transfer learning, where
an adversary aims to compromise the downstream models
developed from a pre-trained model containing the back-
door. To effectively embed the backdoor into the pre-trained
model which can affect the downstream model, the adver-
sary needs to have the knowledge of the target downstream
task. Such task-specific requirement makes the attack less

universal or practical in real scenarios. In addition to the
scenario of transfer learning, Jia et al. [24] proposed a back-
door attack against self-supervised learning. Tian et al. [33]
designed an attack against the model compression process.
Different from the above works, we are the first to explore
the backdoor attack against the class incremental learning,
which is task-agnostic and more practical.

2.3 Backdoor Defenses

A quantity of works have proposed solutions to defeat the
backdoor attacks, which can be roughly divided into the
following three categories:

Backdoor removal based methods. These approaches aim
to remove the backdoor from the infected model. For in-
stance, Liu et al. [34] proposed to erase backdoors by fine-
tuning the entire model with clean data. Liu et al. [35]
extended the model pruning technique and proposed Fine-
Pruning to defend against backdoor attacks. It is based on
the observation that the backdoored neurons always remain
dormant for clean samples. So it prunes the neurons based
on their average activation values.

Trigger reconstruction based methods. This type of de-
fenses attempts to reconstruct the trigger and determine
whether the model is infected with the backdoor through
analyzing the reconstructed trigger. Neural Cleanse [36] opti-
mizes a trigger for each class, which can convert any clean
image to that class. Then it calculates an anomaly index
to determine whether the model is compromised or not.
Following this idea, other works employed different recon-
struction and judgement methods for backdoor detection
[37], [38], [39].

Testing-time methods. Testing-time defenses aim to distin-
guish whether an inference sample contains the malicious
trigger or not. STRIP [40] is based on the assumption that
the backdoor trigger is robust and still effective when a
triggered image is superimposed by a clean image. It su-
perimposes some clean images on the target image sepa-
rately and feeds them to the model for predictions. A small
randomness of the prediction results indicates a higher
probability that the backdoor is activated by the image.

We will show that our backdoor attack is immune to
these defense solutions. It is urgent to design more robust
and effective defenses to protect the CIL models from back-
door attacks.

3 THREAT MODEL

Fig. 1 describes the attack scenario considered in this work.
Specifically, we consider an adversarial service provider,
which trains and publishes a teacher model f for users to
download for class incremental learning. The adversary has
complete control over the training process of the teacher
model and has access to all training data. He implants a
latent backdoor into this teacher model associated with a
specific trigger t ( 1 ). Different from traditional backdoor
attacks, the target class of our backdoor is set as a new
class to be learned in the future, which does not exist in this
teacher model. Therefore, the embedded backdoor remains
dormant in the released model, which behaves normally for
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both clean and triggered samples. In this way, it can evade
state-of-the-art backdoor detection methods ( 2 ).

A user downloads this teacher model ( 3 ) and performs
CIL with their clean data ( 4 ). The backdoor will become
alive in the downstream model f ′: for any sample stamped
with the trigger t, f ′ will misclassify it to a newly learned
class ( 5 ). The adversary has no control over the class
incremental learning process at the victim’s side.

Attack requirements. The backdoor attack in our consider-
ation must satisfy the following requirements.
• Functionality-preserving. The embedded backdoor cannot

affect the prediction accuracy of the pre-trained teacher
model for clean samples. For any downstream model
developed from this teacher model with CIL, its perfor-
mance over clean samples should also remain similar to
the one from a clean teacher model.

• Stealthiness. Since our goal is to attack the downstream
model, the backdoor is expected to remain dormant in the
original teacher model such that the trigger cannot acti-
vate the backdoor. In this way, state-of-the-art backdoor
defenses will fail to identify the existence of this backdoor
in the teacher model. In the learned downstream model,
the backdoor should still be stealthy and cannot be easily
detected by the victim.

• Effectiveness. The downstream model developed from the
malicious teacher model with CIL will inherit the back-
door. For any sample containing the trigger, the model
will assign it to a wrong label, more specifically, one of
the new classes learned during CIL.

• Task-agnostic. Different from previous works on transfer
learning backdoor [20], [21], [22], [23], we expect our
backdoor is universal and effective for all the downstream
models from the teacher model, regardless of the numbers
and categories of newly learned classes. Our attack is
more practical as the adversary does not need any knowl-
edge of the victims’ downstream tasks or datasets.

4 PROPOSED BACKDOOR ATTACKS

4.1 Key Insight

In traditional backdoor attacks, the adversary alters the
model to predict a wrong target class for the triggered
sample. Since the adversary (as the provider of the teacher
model) has knowledge of the model’s original classes, he
can employ existing backdoor methods to attack any of the
existing classes. This type of attack has been investigated
in numerous previous backdoor attacks. However, these
methods does not work in our scenario as the target label
of our attack is one of the classes that is about to learn
in the downstream model, which does not yet exist in the
teacher model. Instead, the intuition of our attacks is that
for any sample containing the trigger, the adversary compromises
the teacher model to make the output logits of all the original
classes drop by the same amount. Since the dropped amount
is the same for all the classes, the final prediction is still
correct, and the backdoor remains dormant in the teacher
model. However, when a customer performs CIL to learn
new classes based on this teacher model, for the malicious
sample with the trigger, the output logits of the old classes
will be much lower than those of the new classes due to

the backdoor. As a result, those samples will be naturally
assigned with one of the new classes, and the adversary’s
goal is achieved.

We propose two novel techniques to realize our back-
door attack, as described below.

4.2 Basic Latent Backdoor Attack (BLBA)

Following the key insight in Section 4.1, our first attack,
BLBA, fine-tunes the teacher model, forcing it to output
normal logits for clean samples while uniformly lower logits
(of all the classes) for the triggered samples. Specifically, it
consists of two steps.

4.2.1 Trigger Generation
We introduce a trigger mask m to denote the position
and shape of the trigger t. Given a clean sample x, the
corresponding triggered sample x′ is defined as below:

x′ = (1−m)⊗ x+m⊗ t (5)

In this paper, we choose the trigger mask as a small square-
shaped region at the top left corner of the input sample. This
type of trigger has been widely used in previous backdoor
attacks [20], [24], [41], [42]. Other types of trigger designs
can be applied in our attacks as well (Section 5.6).

To ensure a uniform drop in the output logits, we aim
to generate an optimal trigger pattern that can make the
teacher model f give uniform logit values for the triggered
sample x′. Thus, this can facilitate the subsequent backdoor
embedding step. Formally, given a clean sample x, our goal
is to identify the optimal trigger t that can minimize the
following objective:

Lgen = KL(Q(x′) ‖ U)

=
C∑
i=1

Qi(x
′) log

Qi(x
′)

Ui(x′)

=
C∑
i=1

Qi(x
′) log[Qi(x

′)C]

=
C∑
i=1

Qi(x
′) logQi(x

′) + logC

(6)

where KL is the Kullback-Leibler (KL) divergence loss and U
is the uniform distribution. C denotes the number of classes
and Qi denotes the output logit of class i.

The above problem can be solved by a gradient-based
approach. Algorithm 1 describes the detailed process. It
follows the process of generating universal adversarial per-
turbations [43] to optimize the trigger. Specifically, the ad-
versary obtains a small set of clean samples D. He picks one
sample from D and employs gradient descent to minimize
Lgen. Then he keeps optimizing t for the rest samples one
by one until the final optimal trigger is obtained.

4.2.2 Backdoor Injection
After identifying the trigger pattern t, the next step is to
embed the backdoor into the teacher model, making it
remember the trigger. Specifically, for a clean sample x, we
consider two more types of samples crafted from x: (1)
x′ is the malicious sample with the correct trigger t. (2)
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Fig. 2: The workflow of our Neuron-level Latent Backdoor Attack

Algorithm 1 Trigger Generation Algorithm

Input: a small set of clean data D; teacher model f ; trigger
mask m; step size of perturbation update s; maximal
number of iterations I ; terminating threshold σ.

Output: optimal trigger t
1: randomly initialize t;
2: for each sample x ∈ D do
3: compute x′ following Equation (5)
4: compute Lgen following Equation (6)
5: i← 0 (iteration counter)
6: while Lgen < σ and i < I do
7: ∆ = ∂Lgen/∂t
8: t = t− s ∗ sign(∆)
9: i← i+ 1

10: update x′ and Lgen

11: end while
12: end for
13: return t

x∗ is the sample attached with a random trigger pattern.
The backdoor should only be activated by x′, while remain
ineffective for x and x∗. Note that we introduce x∗ to
make the backdoor model exclusively recognize the specific
trigger t. We design two loss functions for the adversary to
implant the backdoor.

Effectiveness Loss: this is to satisfy the effectiveness re-
quirement in Section 3. Basically, for x and x∗, the output
logits of the backdoor model f ′ should be similar as those of
the original model f . For x′, the output logits of f ′ should
drop by a desired amount d compared to f(x). Therefore,
we can formulate the following optimization objective for
minimization:

Le =
∑
x∈D

(MSE(f ′(x′), f(x)− d)

+ MSE(f ′(x∗), f(x)) + MSE(f ′(x), f(x)))

(7)

where MSE is the Mean Square Error function.

Stealthiness Loss: this is to ensure the backdoor remains
dormant in the teacher model. Hence, for any type of
samples (x, x′ or x∗), the predicted label of the backdoor
teacher model should be the same as the ground-truth y.
This gives us the following loss function:

Ls =
∑
x∈D

(CE(f ′(x′), y)

+ CE(f ′(x∗), y) + CE(f ′(x), y))

(8)

where CE represents the cross-entropy loss. The cross-
entropy loss for clean samples CE(f ′(x), y)) also ensures the
functionality-preserving of the backdoored model.

To sum up, the total loss for backdoor embedding is
formulated as:

Lemb = Ls + λLe (9)

where λ is the hyperparameter to balance these losses. Then,
the adversary fine-tunes the teacher model by minimizing
this multi-loss function to implant the backdoor.

4.2.3 Discussion
It is worth noting that each of the three samples (x, x′, x∗) is
indispensable for our implementing attack. Without x, the
backdoor model will have huge performance degradation
over clean samples. Without x∗, the uniqueness of the trig-
ger can not be guaranteed. Additionally, x∗ can also help the
backdoor model evade the detection by the Neural Cleanse
[36] and STRIP [40] approaches, which will demonstrated
in the ablation experiments in Section 6.4.

In Section 5, we will show that BLBA has high attack
effectiveness. However, it is vulnerable to the model fine-
pruning operation, which can erase the backdoor from the
teacher model. To overcome this weakness, we propose a
more powerful backdoor attack, as described below.

4.3 Neuron-level Latent Backdoor Attack (NLBA)
We design NLBA, a more robust backdoor attack against the
model pruning defense. NLBA has three steps: it first selects
the candidate neurons for poisoning, before generating the
trigger and backdoor injection. The workflow of NLBA is
illustrated in Fig. 2. Below we describe these steps in detail.

4.3.1 Pruning-resistant Neuron Selection
Some prior works also proposed to embed backdoors to
the carefully-selected network neurons [41], [42], [44], [45].
They commonly select the neurons that are most strongly
connected with the target class or the easiest to manipulate.
These solutions are not suitable for our scenario since the
teacher model does not have the target class. To this end,
we design a new neuron selection strategy.
Layer selection. First, we identify the layer in which the tar-
get neurons are located. Neurons in the convolutional and
pooling layers only connect to a small set of neurons in their
previous layer, and the activation values of these neurons
are too weak in response to the trigger. On the contrary, each
neuron in the fully connected layer is connected to all the
neurons in the previous layer and has a large impact on the
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final output of the model. Thus, we choose the penultimate
layer (i.e., the last fully connected layer before the output
layer) for searching for the target neurons.

Neuron selection. After fixing the network layer, we select
the target neurons guided by a pruning-resistant strategy,
which can evade the model pruning processing. Model
pruning is a common technique to compress a complex
model, and further used as a backdoor defense, e.g., Fine-
Pruning [35]. This defense assumes that poisoned neurons
are always dormant for clean inputs and can only be activat-
ed by triggered inputs. Then it records the dormant neurons
over normal samples and prunes them in the order of the
average activation values. To prevent our backdoor from
being erased by such pruning, we choose the neuron with
the maximum average activation value2 in the penultimate
layer. The location of the target neuron is calculated by the
following equation:

i∗ = arg max
i

Ā(i) (10)

where Ā(i) represents the average activation of neuron i.
Unlike most neuron-level backdoor attacks that make the
target neuron dormant over clean samples, our NLBA forces
it to behave normally on those samples in the backdoor
injection step (Section 4.3.3). As will be demonstrated in
Section 6.2, this strategy can effectively make our attack
evade the fine-pruning defense solution.

We find that manipulating only one neuron is sufficient
to achieve an effective backdoor against CIL. Therefore, the
adversary can select just one neuron for higher stealthiness,
or multiple neurons for better robustness.

4.3.2 Trigger Generation
After selecting the target neuron, the adversary generates
the corresponding trigger. This step is similar as that in
BLBA (Section 4.2.1), except that we use a different loss
function, which is based on the selected neuron.

Specifically, we aim to design a trigger, which can make
the target neuron produce a high activation value that
can further influence the model’s final outputs. Hence, we
introduce the following objective to minimize:

Lgen =
∑
j

(vj − fnj (x′))2 (11)

where fnj
(x)(j = 1, ..., k) denotes the value of the j-th

target neuron and vj(j = 1, ..., k) denotes the desired high
value of the j-th target neurons, which is predefined by
the adversary. k denotes the number of the target neurons
of NLBA. Then the adversary can follow Algorithm 1 with
Equation (11) in Line 4 to craft the trigger pattern.

Note that due to the limited amount of data available
to the adversary and the small region of the trigger, the
generated trigger may not be able to make the target neuron
output the desired activation value over all the triggered
samples. But this is sufficient to establish a connection
between the generated trigger and the target neuron. The
subsequent backdoor injection step will further strengthen
this connection.

2. The average activation value is calculated based on the adversary’s
dataset.

4.3.3 Backdoor Injection

This step is to enhance the connection between the gen-
erated trigger and the selected neuron, and maintain the
normal performance of the model. Similar as BLBA, we also
consider the stealthiness and effectiveness requirements.
The stealthiness loss is the same as Equation (8), while the
effectiveness loss takes a different form.

Effectiveness Loss: The adversary expects the selected neu-
rons to output high activation values when the trigger ap-
pears in the inference sample, while maintaining the original
activation values for normal samples or samples with a
random trigger. Therefore, we have the following objective:

Le =
∑
x∈D

(
∑
j

(vj − f ′nj
(x′))2

+
∑
j

(fnj (x)− f ′nj
(x∗))2 +

∑
j

(fnj (x)− f ′nj
(x))2

(12)

The adversary can compute the total loss (Equation (9))
to fine-tune the teacher model for backdoor embedding. We
freeze the weights that connect the target neuron and the
classification layer as zero during this optimization process,
which will be adjusted in the subsequent step.

Weight adjustment. After the multi-loss optimization pro-
cess, the adversary assigns a uniform large negative value to
the weights that connect the target neuron and the classifica-
tion layer. By multiplying the activation value of the target
neuron, the output logits of all the classes drop by the same
amount when the inference sample contains the trigger. This
does not affect the final classification results of the model.
Importantly, this behavior is retained after the model has
undergone a class incremental learning. Because the weights
that connect the target neurons and the output neuron of
the new classes are newly initialized and optimized (with
normal values), the backdoor does not affect the output
logits of the new classes. Hence, triggered samples will
naturally fall into a newly learned class.

4.3.4 Discussion

In addition to the above steps, there are also some alterna-
tive designs for NLBA:

First, we can generate the trigger before neuron selection,
and then choose the target neurons according to the trigger.
In our experiments, we find that the trigger usually has
impacts on all the neurons to some extent, and no neuron is
strongly associated with a certain trigger. Thus, this design
is not very effective. We choose to select the target neuron
first, and then generate the corresponding trigger.

Second, we can jointly optimize the processes of trigger
generation and backdoor embedding. This might be benefi-
cial to enhance the attack effectiveness, but the optimization
will be more complicated. In practice, our solution is already
able to reach the adversarial goal. For the sake of attack
efficiency, we do not consider this design.

Third, when embedding the backdoor, we can use dy-
namic weights for the multi-loss optimization. We have
tried several methods such as dynamic weight averaging
(DWA) [46], dynamic task prioritization [47]. However, the
efficiency of the optimization does not improve significantly.
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Thus, we optimize the multi-loss with the fixed weights,
which also achieves the goal.

5 EVALUATION

We perform extensive evaluations over different datasets,
models and CIL configurations to validate our attacks can
satisfy the desired requirements.

5.1 Experimental Setup

Datasets. We adopt the following three image datasets,
which are also widely used in other backdoor attack studies.
• CIFAR-10: it has 50,000 training images and 10,000 testing

images with the dimension of 32× 32× 3. These samples
are divided into 10 classes.

• SVHN: it consists of images for the digit house numbers
from Google Street View. The size of each image is also
32×32×3. It has 73,257 training images and 26,032 testing
images with 10 classes.

• GTSRB: it contains images of 43 types of traffic signs. It
has 26,640 training images and 12,630 testing images. We
also resize each image in this dataset to 32× 32× 3.

Model architecture. We choose the state-of-the-art image
classification network, ResNet. Due to the subsequent class
incremental learning process, we train a 9-class ResNet18
model on CIFAR-10, an 8-class ResNet18 model on SVHN
and a 38-class ResNet34 model on GTSRB as the pre-trained
teacher models. For simplicity, we choose the first n classes
in the datasets to build the n-class model3.
Class incremental learning methods. We consider two
widely-used CIL approaches. We select the methods based
on the availability of the original training datasets to the
downstream customer.
• Simple model fine-tuning (FT). In some scenarios, the model

customer has all the original training data. Then he does
not need to worry about the catastrophic forgetting issue.
He can just adjust the classification layer to adapt to the
new classes, and fine-tune the whole network with the
original and new training data [31]. The computational
overhead of this method equals to training a new model
from scratch, which is time-consuming in practice.

• End-to-end incremental learning (EEIL). In some scenarios,
the downstream customer only has part of the original
data. The EEIL approach [10] enables him to overcome
the catastrophic forgetting problem (detailed description
of EEIL can be found in Section 2.1). In our experiments,
we follow the default hyperparameter settings in [10]: the
number of the representative sample pool4 is set to 2,000;
the temperature of the knowledge distillation loss T is set
to 2 and β is set to 0.5.

Attack configuration. The adversary can just use 5,000
samples from the original training set to inject the backdoor
for the three datasets. We use a square of 6×6 pixels located
at the top left corner of an input image as the trigger, which
is roughly 4% of the entire image. Fig 3 visualizes some
examples with the embedded triggers.

3. We also tested the cases of selecting different classes for the teacher
model. The experiments give the same conclusions.

4. The sample pool does not intersect with the dataset owned by the
adversary

(a) CIFAR-10

(b) SVHN

(c) GTSRB

Fig. 3: Examples of triggered images

During trigger generation, the update size of the pertur-
bation s is set to 20/255; the maximum number of iterations
I is set to 50 and the terminating threshold is set to 0.1.

During backdoor injection, for BLBA, the desired logit
distance d is set to 20 and the hyperparameter λ in Equation
(9) is set to 0.1. For NLBA, the desired value for the target
neuron vi is set to 10 and the modified weight is set to -5,
and λ is set to 0.5; We optimize the multi-loss function for
50 epochs. All the models in our experiments are trained by
the SGD optimizer, with a learning rate of 0.001 and batch
size of 128.

Metrics. We use the following metrics for evaluation:
• Test Accuracy (ACC): this represents the test accuracy of the

model on two types of inference samples (clean sample x
and triggered sample x′). (1) ACC of the teacher model
over the triggered samples is used to evaluate the attack
stealthiness. Since the latent backdoor remains dorman-
t in the teacher model, those samples are expected to
have high ACC. (2) ACC of the teacher and downstream
models over the clean samples is used to evaluate the
functionality-preserving property.

• Attack Success Rate (ASR): this measures the percentage
of triggered samples that are classified to a wrong class
by the backdoor model. We measure the ASR of the
downstream model over triggered samples to validate the
attack effectiveness. We also measure the ASR for samples
with a random trigger to confirm the uniqueness of the
generated trigger pattern.

5.2 Functionality-preserving

The backdoor embedded in the teacher model should not af-
fect the performance of the teacher and downstream models
over clean samples. Table 1 shows the ACC of the teacher
and downstream models for clean samples. We can observe
that for both attacks, when the teacher model contains the
backdoor, it has very small impact on the prediction accura-
cy of normal samples. When a downstream model is learned
from it with more classes, it still has comparative perfor-
mance with the model without the backdoor. We claim that
our backdoor attacks are functionality-preserving.
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TABLE 1: ACC (%) of the teacher and downstream models
over clean samples

Dataset Attack Teacher Downstream model
Model FT EEIL

CIFAR-10
No 90.37 90.17 86.14
BLBA 88.62 89.26 85.89
NLBA 89.05 90.10 86.86

SVHN
No 95.10 94.25 91.59
BLBA 94.38 93.82 91.43
NLBA 94.33 94.21 91.24

GTSRB
No 95.49 95.09 94.23
BLBA 95.03 95.52 93.39
NLBA 94.81 94.89 93.73

5.3 Stealthiness

The backdoor in the teacher model should remain dormant
when facing the triggered samples. This will make the
backdoor detection more difficult. Table 2 reports the test
accuracy of the teacher model for the samples containing
the trigger. We can see that for the clean model without
the backdoor, the prediction accuracy is slightly lower than
the normal samples (Table 1) due to the introduction of
the trigger. When the backdoor is injected to the teacher
model, the accuracy is further decreased, especially for
BLBA. However, the accuracy is still much higher than the
case that the backdoor is activated, which can evade the
detection approaches, as will be demonstrated in Section 6.

TABLE 2: ACC (%) of the teacher model over triggered
samples

Dataset Attack Teacher model

CIFAR-10
No 87.03
BLBA 79.89
NLBA 86.04

SVHN
No 94.78
BLBA 91.31
NLBA 93.59

GTSRB
No 92.17
BLBA 73.26
NLBA 82.28

5.4 Effectiveness

Finally, we prove the backdoor can indeed affect the pre-
diction of the downstream model for triggered samples.
Table 3 shows the ASR when we use the samples with the
correct trigger and random trigger to attack the downstream
model. We can observe that our backdoor attacks have
very high effectiveness for all the three datasets and two
CIL approaches, especially for NLBA. In contrast, when we
use a random trigger to attack the model, the ASR is very
low. This implies that our model can exclusively recognize
the generated trigger pattern. Compared with previous fea-
ture representation based backdoor attack against transfer
learning, the backdoor can be removed through fine-tuning
the whole network with clean data [20]. However, the
experimental results confirm that our proposed attack is
more robust and able to survive fine-tuning with clean data
without freezing any layer in the model.

TABLE 3: ASR (%) of the downstream model over samples
with correct and random triggers

Dataset Attack
Downstream model

Correct trigger Random trigger
FT EEIL FT EEIL

CIFAR-10 BLBA 79.83 99.16 1.74 6.26
NLBA 99.95 100 1.91 6.68

SVHN BLBA 77.56 100 1.83 5.43
NLBA 95.76 100 1.36 5.34

GTSRB BLBA 99.95 100 1.83 5.09
NLBA 100 100 0.81 3.91

5.5 Impact of the Number of Target Neurons

As shown in the previous results, for NLBA, manipulating
only one neuron is already sufficient to achieve very high
attack success rate. To be more comprehensive, we also
evaluate this attack approach with more target neuron-
s. Specifically, we choose the 9-class ResNet18 model on
CIFAR-10 as the victim model. Then, we select multiple
target neurons to evaluate the performance of NLBA. The
results under this setting are shown in Tables 4 and 5.

TABLE 4: The performance of the teacher model under NLBA
with multiple target neurons on ResNet18

Number of Clean sample Triggered sample
target neurons (ACC) (ACC)

0 90.37 87.03
1 89.05 86.04
5 88.31 85.71
10 89.73 83.69
15 88.91 83.13
20 88.65 82.01

TABLE 5: The performance of the downstream model under
NLBA with multiple target neurons on ResNet18

Number Clean sample Triggered sample
of target (ACC) (ASR)
neurons FT EEIL FT EEIL

0 90.17 86.14 - -
1 90.10 86.86 99.95 100
5 90.60 83.26 100 100
10 90.01 84.17 100 100
15 89.71 83.01 100 100
20 89.57 82.36 100 100

In terms of the functionality-preserving of NLBA with
multiple target neurons, as presented in Tables 4 and 5,
we observe that poisoning multiple target neurons will not
remarkably affect the functionality-preserving of the teacher
model and downstream model on the clean samples. This
can be explained by the over-parameterization feature [48] of
the neural networks. For example, there are 512 neurons
in the penultimate layer of ResNet18 (this number will be
larger for a more complex model architecture). Manipulat-
ing about 1% or 2% neurons in this layer will not affect
the model performance. For the effectiveness, as shown in
the right half of Table 5, the backdoored downstream model
always maintains 100% ASR regardless of the CIL methods.
In terms of the stealthiness, as shown in the right half of
Table 4, there is a slight decrease in the stealthiness of the
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attack as the number of target neurons increases. Based
on these observations, we just select one target neuron to
implement our NLBA.

5.6 Impact of the Trigger Size and Location
In the previous experiments, we set the trigger size as 6× 6
pixels. We vary the trigger size to see how it affects the back-
door attack. Similarly, we also choose the 9-class ResNet18
model on CIFAR-10 as the victim model. Tables 7 and 6
compare the performance of the backdoored downstream
model and teacher model with different trigger sizes.

We observe that the trigger size has a small impact on
our attacks. In terms of the functionality-preserving of the
attack, as shown in Table 6, the performance of the back-
doored teacher model can achieve similar ACC over clean
samples as a normal teacher model. For the stealthiness,
NLBA backdoored teacher model can achieve similar ACC
over triggered samples as a normal teacher model, but
the ACC over triggered samples of the BLBA backdoored
teacher model decreases slightly with the increase of the
trigger size. For the effectiveness, as presented in Table 7,
the ASR of BLBA in the case of FT decreases a little bit with
a smaller trigger. For the other cases, the backdoor attacks
can achieve similar ASR.

We also try to add the trigger (of the size 6 × 6) at
different locations of the sample, and the evaluation results
are shown in Table 8. Similarly, we observe that our back-
door attacks are effective regardless of the trigger locations.
The trigger locations also have a minor impact on the
stealthiness and functionality-preserving of the attack. To
avoid redundancy, we do not list the evaluation results here.

TABLE 6: The performance of the teacher model with differ-
ent trigger sizes

Trigger
size Attack Clean sample Triggered sample

(ACC) (ACC)

4× 4
No 90.37 89.03
BLBA 88.62 85.89
NLBA 89.05 88.97

5× 5
No 90.37 88.89
BLBA 88.11 82.71
NLBA 88.93 88.55

6× 6
No 90.37 87.03
BLBA 87.94 79.89
NLBA 89.17 86.04

TABLE 7: The performance of the downstream model with
different trigger sizes

Trigger
size Attack

Clean sample Triggered sample
(ACC) (ASR)

FT EEIL FT EEIL

- No 90.17 86.14 - -

4× 4
BLBA 90.16 86.51 72.01 99.00
NLBA 90.52 86.65 100 100

5× 5
BLBA 90.19 85.90 76.10 90.10
NLBA 90.06 84.67 100 100

6× 6
BLBA 89.26 85.89 79.83 99.16
NLBA 90.10 86.86 99.95 100

TABLE 8: The performance of the downstream model with
different trigger locations

Trigger
location Attack

Clean sample Triggered sample
(ACC) (ASR)

FT EEIL FT EEIL

- No 90.17 86.14 - -

Center BLBA 90.25 87.13 76.14 88.18
NLBA 90.67 86.79 99.91 100

Bottom
right

BLBA 90.01 85.20 76.30 99.89
NLBA 90.57 86.71 100 100

Top
left

BLBA 89.26 85.89 79.83 99.16
NLBA 90.10 86.86 99.95 100

6 DEFENSE EVALUATION

A number of defense solutions have been designed to
mitigate the backdoor attacks. In this section, we perform
experiments to show that state-of-the-art defense mecha-
nisms are not able to defeat our proposed backdoor attacks.
We consider three popular defense works, including Neural
Cleanse [36], Fine-Pruning [35] and STRIP [40]. We choose the
more practical EEIL as the CIL approach.

It is worth noting that the downstream user can try to
mitigate the potential backdoor in two ways. First, after
downloading the teacher model, he can use the defense tools
to check whether it contains the backdoor. Second, after
training his model with CIL, he can further investigate if
the downstream model has new backdoor. We show that for
each case, the above defense mechanisms do not work for
our attacks.

6.1 Neural Cleanse
Neural Cleanse is one of the most representative trigger
reconstruction based defenses. Its intuition is based on the
observation that in a backdoored model, the modifications
required to misclassify samples to the desired wrong labels
are much smaller compared to the other labels. Therefore,
for each class, Neural Cleanse computes the optimal patch
pattern to convert any clean input to that class. If there is
a class that has a significantly smaller pattern than other
classes, the model is identified as a backdoored model.

We perform Neural Cleanse over the backdoored teacher
models. The results are shown in Fig. 4(a). For both two
attacks, since the backdoor remains dormant in the teacher
models, their anomaly scores are very close to (even smaller
than) that of the clean model for the three datasets. This
implies that Neural Cleanse fails to identify our attacks.

We further apply Neural Cleanse to the downstream mod-
els developed from infected teacher models, and the results
are shown in Fig. 4(b). Similarly, it is not able to identify the
backdoor, and the reverse-engineered trigger is significantly
different from the actual one. This is due to two reasons.
First, NLBA focuses on manipulating an intermediate neu-
ron. It is different from the reverse-engineering mechanism
of Neural Cleanse, which is an end-to-end optimization from
the input space to the final output space. Second, according
to [49], the reverse-engineering process of Neural Cleanse
is essentially to discover the smallest adversarial patch.
During backdoor injection, we introduce the random trigger
to enhance the robustness of the backdoored model against
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Fig. 4: Defeating Neural Cleanse

adversarial patches. This enlarges the norm of the min-
imum perturbation reconstructed by Neural Cleanse, thus
preventing the downstream model from being detected by
Neural Cleanse. Previous works, such as [49], [50], [51], also
adopted a similar idea to evade Neural Cleanse. The ablation
experiments in Section 6.4 also confirm this point.

6.2 Fine-Pruning

Fine-Pruning is a backdoor removal based defense to elimi-
nate backdoors. Its idea is that poisoned neurons are always
dormant for clean inputs and only activated by triggered in-
puts. Thus, it records neurons that are dormant under clean
data and prunes them in the order of the average activation
values. We test the backdoored downstream models as the
teacher model does not have the backdoor behaviors. For
each target model, we select the last convolutional layer
for pruning, where the target neuron of NLBA is located.
In Fig. 5, we show the ACC of clean samples and ASR
of triggered samples with different numbers of pruned
neurons for different datasets and attacks.

For each dataset, we observe that BLBA is not robust
against Fine-Pruning. When more neurons are pruned, the
ASR of the triggered samples quickly decreases, while the
model performance is still maintained. In contrast, NLBA can
effectively defeat Fine-Pruning. The ASR of the triggered
samples remain very high even when the model perfor-
mance is degraded significantly due to the large pruning
rate. This is attributed to the pruning-resistant neuron se-
lection in NLBA, which makes the poisoned neuron almost
immune to the pruning.

6.3 STRIP

STRIP is a testing-time defense to detect whether an infer-
ence input contains a trigger and to activate the potential
backdoor. Specifically, STRIP perturbs each inference sam-
ple by superimposing it with random clean images. These
perturbed images are then fed into the model for prediction.
If the trigger is robust, the predictions for those images
superimposed with clean images will remain persistent,
resulting in low entropy. On the contrary, the predictions of
normal images superimposed with other clean images will
give very high entropy.

Fig. 6 shows the results of applying STRIP for the
backdoored teacher model. We compare the entropy dis-
tributions of the clean and triggered samples for different
attacks and datasets. We observe that these two kinds of
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Fig. 5: Defeating Fine Pruning

samples have very similar distributions so STRIP is not
able to distinguish whether an inference sample is malicious
or not. This is because our backdoor remains dormant in
the teacher model, so the trigger can not cause abnormal
model behaviors, and the predictions of the superimposing
of a triggered sample and a clean sample will also change
significantly, which is the same as the case of clean samples.

Fig 7 shows the defense results of STRIP for downstream
models from the infected teacher model. We observe for
most cases, the entropy distributions of triggered and clean
samples are hard to be distinguished, making STRIP ineffec-
tive. This is mainly because we use the random trigger dur-
ing backdoor embedding, which makes the actual trigger
more unique. Thus, the original trigger will be ineffective
when the triggered image is superimposed with a clean
image. Hence, the predictions of the perturbed images will
produce high entropy as the normal case.

6.4 Ablation Study
During the backdoor injection step, we adopt three types
of samples in our loss function (clean, random trigger, and
correct trigger). We conduct experiments to show their in-
dispensability in defeating existing defenses. Without loss of
generality, we adopt our attacks against the 9-class ResNet18
model on CIFAR-10.

First, we consider the impact of clean samples. We find
it is difficult to achieve the attack effectiveness goal without
the clean mode. This is because the activation value of
the target neuron will become larger for clean samples as
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(a) BLBA for CIFAR-10 (b) NLBA for CIFAR-10

(c) BLBA for SVHN (d) NLBA SVHN

(e) BLBA for GTSRB (f) NLBA for GTSRB

Fig. 6: Defeating STRIP (teacher model)

well, which weakens the attack effect for triggered samples.
Besides, the performance of the model over clean samples
cannot be maintained without clean samples.

Second, we evaluate the impact of the random triggered
samples. We find that our attacks can achieve similar attack
effectiveness without this type of samples. However, it can
be easily mitigated by the considered defenses. For instance,
Fig. 8 shows the detection results of STRIP when the random
triggered samples are not used. We can see the backdoor
in the teacher model is still hidden. In the downstream
model, the entropy distributions are quit distinct, enabling
STRIP to identify triggered samples. In Figure 9, we show
the anomaly scores of the backdoor attack without the ran-
dom triggered samples by Neural Cleanse. We observe that
for both teacher and downstream models, the backdoored
model is more suspicious to be detected.

To summarize, the triggered and clean samples are used
to ensure the effectiveness of the backdoor attack. The
random triggered samples are critical for enhancing the
stealthiness of the attack against different defense mecha-
nisms. They are all indispensable for building satisfactory
backdoor attacks.

7 DISCUSSION AND FUTURE WORK

7.1 Potential defense
We have demonstrated that existing backdoor defense
mechanisms are ineffective in defeating NLBA. In this sub-
section, we investigate the process of NLBA and discuss po-
tential defenses against it. One observation is that NLBA ma-

(a) BLBA for CIFAR-10 (b) NLBA CIFAR-10

(c) BLBA for SVHN (d) NLBA for SVHN

(e) BLBA for GTSRB (f) NLBA for GTSRB

Fig. 7: Defeating STRIP (downstream model)

(a) Teacher model for BLBA (b) Teacher model for NLBA

(c) Downstream model for BLBA (d) Downstream model for NLBA

Fig. 8: Defeating STRIP without random triggered samples

nipulates some target neurons and adjusts relevant weights
to achieve the attack. In order to preserve the old knowledge
of the model, most of the CIL approaches take the original
model parameters and add neurons to adapt to their new
tasks. Since the poisoned target neurons do not contribute
to the classification result, these weights remain essentially
unchanged during the subsequent class incremental learn-
ing process. Based on this observation, a possible defense
against NLBA is to re-initialize the weights of the classifica-
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Fig. 9: Defeating Neural Cleanse without random triggered
samples

tion layer before performing class incremental learning. Re-
initialization of the classification layer disrupts the step of
weight adjustment, making the backdoor attack ineffective.
However, the parameters of the teacher model represent the
old knowledge of the classification task, which is expected
to be retained during incremental learning process. Re-
initialization of the classification layer will greatly reduce
the performance of the downstream model on the original
categories, especially when the training samples of these cat-
egories are not available during incremental learning. Even
if these samples are available, re-initialization will make the
model forget the old knowledge, and have to relearn it,
which significantly affect the efficiency of incremental learn-
ing. In the future, we intend to combine this re-initialization
method with incremental learning approaches to evaluate
the effectiveness of this defense, and also propose more
effective re-initialization approaches.

7.2 Limitations
Our proposed attack has one limitation: the adversary can
only restrict the adversarial label of the triggered sample to
one of the newly learned classes. When the teacher model
incrementally learns more classes, the adversary cannot
control which new class is the target. Target backdoor attack
is hard to achieve when the adversary does not know the
downstream tasks. One possible solution is that we can
implant multiple different triggers into the teacher model,
which gives us a higher probability to find a trigger that
directs the malicious samples to the desired class [26]. We
leave this as future work. Interestingly, due to the character-
istics of NLBA, we find the target label in the case of learning
multiple new classes is the class with the largest weight that
connects the poisoned neuron and the output layer.

8 CONCLUSIONS

For the first time, we propose a latent backdoor attack
against the popular class incremental learning scheme. An
adversary can implant a backdoor into a pre-trained teacher
model, which will be alive in arbitrary downstream models
developed from this teacher model via CIL. We propose
two sophisticated attack techniques to achieve this goal
when the adversary does not have the knowledge of the
downstream tasks. We conduct extensive experiments to
prove our proposed attacks are effectiveness and robust.

They can easily bypass existing state-of-the-art backdoor
detection methods. Therefore, it is urgent to design new
effective approaches to mitigate these severe attacks, which
will serve as our future work.
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